ПРОГРАММА

вступительных испытаний в магистратуру по направлению 04.04.01 - Химия

Магистерская программа – Химия высокомолекулярных соединений

ВВЕДЕНИЕ

Основные понятия и определения: полимер, олигомер, макромолекула, мономерное звено, степень полимеризации, контурная длина цепи. Молекулярные массы и молекулярно-массовые распределения (ММР). Усредненные (средние) молекулярные массы (среднечисловая, средневесовая). Нормальное (наиболее вероятное) распределение. Важнейшие свойства полимерных веществ, обусловленные большими размерами, строением гибкостью цепным макромолекул. Роль полимеров в живой природе и их значение как промышленных материалов (пластмассы, каучуки, волокна и пленки, покрытия, клеи). Предмет и задачи науки о высокомолекулярных соединениях (полимерах). Место науки о полимерах как самостоятельной фундаментальной области знания среди других фундаментальных химических дисциплин. Её роль в научно-техническом прогрессе и основные исторические этапы ее развития.

КЛАССИФИКАЦИЯ ПОЛИМЕРОВ

Классификация полимеров в зависимости от происхождения, химического состава и строения основной цепи, в зависимости от топологии макромолекул. Однотяжные и двухтяжные макромолекулы. Природные и синтетические полимеры. Органические, элементоорганические и неорганические полимеры. Линейные, разветвленные, лестничные и сшитые полимеры, дендримеры. Гомополимеры, сополимеры, блок-сополимеры, привитые сополимеры. Гомоцепные и гетероцепные полимеры. Биополимеры, основные биологические функции белков, рибонуклеиновой и дезоксирибонуклеиновой кислот. Краткая характеристика и области применения важнейших представителей различных классов полимеров.

МАКРОМОЛЕКУЛЫ И ИХ ПОВЕДЕНИЕ В РАСТВОРАХ

Конфигурация макромолекулы и конфигурационная изомерия. Локальные и конфигурационные изомеры в макромолекулах полимеров монозамещенных этиленов и диенов. Стереоизомерия и стереорегулярные макромолекулы. Изотактические и синдиотактические полимеры.

Конформационная изомерия и конформация макромолекулы. Внутримолекулярное вращение и гибкость макромолекулы. Количественные характеристики гибкости макромолекул (среднеквадратичное расстояние между концами цепи, радиус инерции макромолекулы, статистический сегмент, персистентная длина). Свободно-сочлененная цепь как идеализированная модель гибкой макромолекулы. Функция распределения расстояний между концами свободносочлененной цепи (гауссовы клубки). Средние размеры макромолекулы с учетом постоянства валентных углов. Энергетические барьеры внутреннего вращения; понятие о природе тормозящего потенциала. Поворотные изомеры и гибкость реальных цепей. Связь гибкости (жесткости) макромолекул с их

химическим строением: факторы, влияющие на гибкость реальных цепей. Упорядоченные конформации изолированных макромолекул (полипептиды, белки, нуклеиновые кислоты). Полимер-полимерные комплексы синтетических и природных полимеров. Кооперативные конформационные превращения.

Макромолекулы в растворах. Термодинамический критерий растворимости и доказательство термодинамической равновесности растворов. Фазовые диаграммы систем полимер - растворитель. Критические температуры растворения. Неограниченное и ограниченное набухание.

Термодинамическое поведение макромолекул в растворах и их особенности по сравнению с поведением молекул низкомолекулярных веществ. Отклонения от идеальности и их причины. Уравнение состояния полимера в растворе. Второй вириальный коэффициент и q -температура (q -условия). Невозмущенные размеры макромолекул в растворе и оценка гибкости.

Определение среднечисловой молекулярной массы из данных по осмотическому давлению растворов полимеров. Зависимость растворимости от молекулярной массы. Физико-химические основы фракционирования полимеров.

Светорассеяние как метод определения средневесовой молекулярной массы полимеров. Определение размеров макромолекул.

Гидродинамические свойства макромолекул в растворах. Вязкость разбавленных растворов. Приведенная и характеристическая вязкости. Связь характеристической вязкости с молекулярной массой и средними размерами макромолекул. Вискозиметрия как метод определения средневязкостной молекулярной массы.

Диффузия макромолекул в растворах. Гельпроникающая хроматография и фракционирование полимеров.

Седиментация макромолекул (ультрацентрифугирование). Определение молекулярных масс методами ультрацентрифугирования и диффузии.

Ионизующиеся макромолекулы (полиэлектролиты). Химические и физикохимические особенности поведения ионизирующихся макромолекул (поликислот, полиоснований и их солей). Количественные характеристики силы поликислот и полиоснований. Электростатическая энергия ионизированных макромолекул. Специфическое связывание противоионов. Кооперативные конформационные превращения ионизирующихся полипептидов в растворах. Изоэлектрическая и изоионная точка. Амфотерные полиэлектролиты.

Концентрированные растворы полимеров и гели. Ассоциация макромолекул в концентрированных растворах и структурообразование. Жидкокристаллическое состояние жесткоцепных полимеров. Лиотропные жидкокристаллические ситемы и их фазовые диаграммы. Особенности реологических и механических свойств концентрированных растворов.

ПОЛИМЕРНЫЕ ТЕЛА

Структура и основные физические свойства полимерных тел. Особенности молекулярного строения полимеров и принципы упаковки макромолекул. Аморфные кристаллические Условия, необходимые полимеры. кристаллизации полимеров. Температура кристаллизации температура плавления. Структура И надмолекулярная организация кристаллических полимеров. Различия и сходство в структурной организации кристаллических и аморфных полимеров. Термотропные жидкокристаллические (мезоморфные) полимеры.

Свойства аморфных полимеров. Три физических состояния. Термомеханические кривые аморфных полимеров.

Высокоэластическое состояние. Термодинамика и молекулярный механизм высокоэластической деформации. Энтропийная природа высокоэластичности. Связь между равновесной упругой силой и удлинением. Нижний предел молекулярных масс, необходимых для проявления высокоэластичности. Релаксационные явления в полимерах. Механические и диэлектрические потери. Принцип температурно-временной суперпозиции.

Стеклообразное состояние. Особенности полимерных стекол. Вынужденная эластичность и изотермы растяжения. Механизм вынужденно-эластической деформации. Предел вынужденной эластичности. Хрупкость полимеров.

Вязко-текучее состояние. Механизм вязкого течения. Кривые течения полимеров. Зависимость температуры вязкого течения от молекулярной массы. Аномалии вязкого течения. Формование изделий из полимеров на режиме вязкого течения.

Пластификация полимеров. Правила объемных и молярных долей. Механические модели аморфных полимеров.

Свойства кристаллических полимеров. Термомеханические кривые кристаллических и кристаллизующихся аморфных полимеров. Изотермы растяжения и молекулярный механизм "холодного течения" кристаллических полимеров и полимерных стекол при растяжении.

Долговечность полимерных материалов. Механизм разрушения полимеров.

Ориентированные структуры кристаллических и аморфных полимеров. Анизотропия механических свойств. Способы ориентации. Принципы формования ориентированных волокон и пленок из расплавов и растворов. Особенности формирования жидкокристаллической фазы; получение суперпрочных волокон и пластиков. Композиционные материалы. Принципы формования полимеров, наполненные полимеры.

ХИМИЧЕСКИЕ СВОЙСТВА И ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ ПОЛИМЕРОВ

Химические реакции, не приводящие к изменению степени полимеризации макромолекул: полимераналогичные превращения и внутримолекулярные превращения. Особенности реакционной способности функциональных групп макромолекул.

Примеры использования полимераналогичных превращений и внутримолекулярных реакций для получения новых полимеров.

Химические реакции, приводящие к изменению степени полимеризации макромолекул. Деструкция полимеров. Механизм цепной и случайной деструкции. Деполимеризация. Термоокислительная и фотохимическая деструкция. Механодеструкция. Принципы стабилизации полимеров.

Сшивание полимеров (вулканизация каучуков, отверждение эпоксидных смол).

Использование химических реакций макромолекул для химического и структурно-химического модифицирования полимерных материалов и изделий.

Привитие и блок-сополимеры - основные принципы синтеза и физико-химические свойства.

СИНТЕЗ ПОЛИМЕРОВ

Классификация основных методов получения полимеров.

Полимеризация. Термодинамика полимеризации. Понятие о полимеризационно-деполимеризационном равновесии.

Классификация цепных полимеризационных процессов.

Радикальная полимеризация. Инициирование радикальной полимеризации. Типы инициаторов. Реакции роста, обрыва и передачи цепи. Кинетика радикальной полимеризации при малых степенях превращения. Понятие о квазистационарном состоянии. Молекулярная масса и молекулярно-массовое распределение полимеров, образующихся при радикальной полимеризации. Полимеризация при глубоких степенях превращений.

Реакционная способность мономеров и радикалов.

Радикальная сополимеризация. Уравнение состава сополимеров. Относительные реакционные способности мономеров и радикалов. Роль стерических, полярных и других факторов; схема Q-е.

Способы проведения полимеризации: в массе, в растворе, в суспензии и в эмульсии.

Катионная полимеризация. Характеристика мономеров, способных вступать в катионную полимеризацию. Катализаторы и сокатализаторы. Рост и ограничение роста цепей при катионной полимеризации. Влияние природы растворителя. Кинетика процесса.

Анионная полимеризация. Характеристика мономеров, способных вступать в анионную полимеризацию. Катализаторы анионной полимеризации. Инициирование, рост и ограничение роста цепей при анионной полимеризации. "Живые цепи".

Координационно-ионная полимеризация в присутствии гомогенных и гетерогенных катализаторов типа Циглера - Натта. Принципы синтеза стереорегулярных полимеров.

Особенности ионной полимеризации циклических мономеров.

Поликонденсация. Типы реакций поликонденсации. Основные различия полимеризационных и поликонденсационных процессов. Термодинамика поликонденсации и поликонденсационное равновесие. Молекулярная масса и молекулярно-массовое распределение при поликонденсации. Кинетика поликонденсации. Проведение поликонденсации в расплаве, в растворе и на границе раздела фаз.

ЛИТЕРАТУРА

Основная

- 1. Киреев В.В. Высокомолекулярные соединения, Учебник М.: Высшая Школа, 1992
- 2. *Семчиков Ю.Д., Жильцов С.Ф., Кашаева В.Н.* Введение в химию полимеров: Учебное пособие. М.: Высшая школа, 1988
- 3. Тагер А.А. Физико-химия полимеров, М., Химия, 1978

- 4. Кулезнев В.Н., Шершнев В.А. Химия и физика полимеров: Учебник М.: Высшая школа, 1988
- 5. Шур А.М. Высокомолекулярные соединения, Учебник 3-е изд., перераб. и доп. М.: Высшая школа, 1981
- 6. Практикум по высокомолекулярным соединениям, под редакцией В.А. Кабанова, Учебное пособие, М.: Химия, 1987

Дополнительная

- 1. Энциклопедия полимеров, М. Изд.БСЭ, т.т. 1-3 1977
- 2. Химическая энциклопедия, М.: Издательство БРЭ, в т-т.1-5 (1988-1998)
- 3. Elias H.G., An Introduction to Polymer Science, VCH, Weinheim, 1997
- 4. Young R., Lovell P., Introduction to Polymers, Chapman&Hall, London, 1996
- 5. Stevens M. Polymer Chemistry, Oxford University Press, Oxford, 1999